Course Type	Course Code	Name of Course	L	Т	Р	Credit
DC	NMEC520	Advanced Dynamics	3	1	0	4

Course Objective

• To learn the advanced topics in the dynamics of particles and rigid bodies using the approaches of Newtonian and analytical dynamics.

Learning Outcomes

- Develop insights into rigid-body rotation
- To write equations of motions of 3D multi-body systems
- To formulate trajectories of planetary bodies
- Application of Variational principles to dynamical systems

Unit No.	Topics to be Covered	Lecture Hours (L+T)	Learning Outcomes
1	Coordinate systems, relative motion, kinematics of a particle in rotating frame and non-rotating frames	3+1	Students will be familiar with different coordinate systems and with kinematics in inertial and non-inertial frames.
2	Kinetics of system of particles, work-energy relation, conservation of linear and angular momentum for system of particles	5+2	Learning to apply the conservation laws for a system of particles
3	Central force motion, Conic-sections, energy analysis, perturbed two-body problem, restricted two-body problem	6+2	Formulating central force systems involving the motion of planetary bodies.
4	Dynamics of systems with steady and variable mass flow, incremental analysis, angular momentum in steady and variable mass flow, chain problems.	5+1	Students will learn to express equations of motion for systems with steady and variable mass flow.
5	Spatial kinematics of rigid bodies, Kinematics of rotation, Rotation Matrices, Euler's theorem, Euler angles, Euler-Rodriguez formula	6+2	Students will learn to visualize the rotations of a 3D rigid-boy.
6	Rigid Body Kinetics- Body- fixed frame of reference, Angular Momentum Tensor, Kinetic Energy for Spheric motion and General motion, Eulers equation of motion and modified Eulers equation, Application in Gyrodynamics	7+2	Students will learn to express the angular momentum and kinetic energy of 3D rigid bodies. Subsequently, write its equations of motion.
6	Introduction to analytical dynamics, generalized coordinates, Systems with Constraints- Holonomic and non-Holonomic constraints	4+2	To understand the concept of generalized coordinates, different types of constraints in dynamical systems
7	Hamilton's principle, Lagrange's equation of motion, its applications in obtaining equations of motion for discrete and continuous systems, Noether's theorem and symmetry.	6+2	Students will be familiar with the application of Hamilton's and Euler-Lagrange's techniques in analyzing the dynamics of mechanical systems.
	Total	42+14	

Text Books:

- 1. Methods of Analytical Dynamics by Leonard Meirovitch, Dover publications.
- 2. Engineering Dynamics by Meriam and Kraige, sixth edition, Wiley publications.

Reference Books:

- 1. Classical Mechanics by Herbert Goldstein, Charles P. Poole, John Safko, Pearson.
- 2. Advanced Dynamics by Donald T. Greenwood, Cambridge University Press.
- 3. Vector Mechanics for Engineers, Beer and Johnston, 12th edition, McGraw Hill Education